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A generalization of the generalized Langevin equation (stochastic dynamics) is introduced in order to model
chemical reactions which take place in environments with both density and temperature variations. This
phenomenological constructionsgiven the name irreversible generalized Langevin equation (iGLE)sensures
that both the bath and its response to the chosen coordinates of the projected systems are characterized by the
same imposed temperature profile. As in the earlier construction, the present generalization does reproduce
the generalized Langevin equation in equilibrium and quasi-equilibrium limits. Numerical results indicate
surprising behavior when the temperature ramping conditions are fast compared to the solvent response.

I. Introduction

Understanding the dynamics of chemical reactions is a
primary objective of theoretical chemistry. For those reactions
which have an easily identifiable reaction coordinate coupled
to the solvent through a uniform response, this understanding
is fairly complete.1-9 In these cases, the dynamics of an effective
one-dimensional, or few-dimensional, subsystem are well
described by a projection of the equations of motion of a full-
dimensional mechanical system. The projected equations of
motion, called the generalized Langevin equation (GLE), involve
an effective potential of mean force (PMF) and associated
stochastic forces.1,10-18 A new level of difficulty arises, however,
if the solvent response is no longer stationary. The nonstation-
arity is presumably due to anirreVersible variation, in the
volume or temperature, for example, of the solvent, which is
dissimilar to the irreversibility in the subsystem that is already
considered within the GLE. In the present series,19,20 we have
constructed a new class of stochastic equations of motion
involving nonstationary friction kernels that thereby include this
additional irreversible phenomenon, and have named it the
irreversible generalized Langevin equation (iGLE).

The iGLE represents our initial attempt at formulating a
consistent nonstationary stochastic theory to describe the
dynamics of the reduced-dimensional subsystem vis-a-vis the
chosen coordinates. Since the seminal work of Andersen,21

several groups have described the construction of static and
dynamic averages for a variety of ensembles.22-26 This effort
allows for the construction of full-dimensional molecular
dynamics with fluctuating volume in constant-pressure en-
sembles, and fluctuating energy in the canonical ensemble, for
example. Presumably, irreversible variations in these variables
which are sufficiently slowsadiabaticsthat linear response
theory is valid may also be characterized with these approaches.
However, for faster irreversible variations this is not necessarily
so, and a new theory is needed. It is the projection of such a
theory with respect to the reduced-dimensional subsystem that

is the object of this work. The iGLE has been suggested as a
candidate stochastic equation of motion to describe systems with
irreversible volume variations, not just fluctuations, and has been
shown to be phenomenologically consistent with various desired
limits.19 In concurrent work, we have also shown that it is the
projection of an open Hamiltonian system where the irrevers-
ibility in the volume variations is indirectly described by an
irreversible parameter controlling the degree to which the bath
is confined.27

In summary, the specific irreversibility addressed in the
previous work of this series involves variations in the friction
at constant temperature.19,20,27While this case is of interest in
describing, for example, the dynamics of a tagged particle in
an environment which is undergoing an isothermal compression,
its generalization to include irreversible temperature variations
would enable a variety of new applications of the theory. A
particularly important example of such an application would
be the consideration of temperature-ramped chemical kinetics.
Other variable-temperature applications might include thermo-
stating in molecular-dynamics (MD) simulations,28 nonequilib-
rium simulations of colloidal suspensions,28,30 and simulations
of adsorbed systems where the boundary layer of the effective
microscopic box is coupled to a stochastic heat bath with the
other layers being governed by deterministic MD.28,32

In the present paper, we will further generalize the iGLE to
describe irreversible temperature variations. After giving a brief
review of the constant-temperature iGLE (section II), we
introduce in section III a method for allowing temporal
variations in the temperature of the heat bath. This method takes
advantage of the properties of Gaussian random processes (as
outlined in the Appendix) to allow us to vary the bath
temperature on arbitrary time scales while still obtaining the
correct limiting behavior at equilibrium. The resulting iGLE
formalism is shown to satisfy a generalized, nonstationary
version of the fluctuation-dissipation theorem. An important
feature of this method is that it leads to much more accurate
tracking of a rapidly varying temperature bath, where the
effective temperature is determined through the mean-square
random force (MSRF), than does the naive (albeit adiabatically
correct) alternative method of varying the temperature in the
auxiliary Gaussian bath. This advantage and some consequences
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thereof are illustrated in section IV by way of numerical
simulations using several different temperature profiles and
friction-kernel decay times. We find that the system properties,
e.g. the instantaneous system temperature determined through
the mean-square velocity (MSV), obtained from the new iGLE
are generally more responsive to temperature variations than
those obtained from the naive adiabatic method. The iGLE also
shows qualitative structure in the time evolution that the
adiabatic method fails to produce.

II. Constant-Temperature iGLE

The dynamics of the iGLE may be characterized by the
stochastic differential equation,

whereF(t) (≡ -∇qV(q(t))) is the external force,υ ()q̆) is the
velocity, andq is the mass-weighted position. The random force
ê0(t) due to the solvent is related to the stationary friction kernel
γ0(t,t′) through the fluctuation-dissipation (FD) theorem33

whereT0 is some fixed temperature and is usually set to the
initial temperature in the infinite past. The functiong(t)
characterizes the irreversible change in the solvent response. It
is required to go to a constant at infinite time, so that the iGLE
will go to an equilibrium GLE at long times.

By construction, the generalized random force

in eq 1 satisfies a nonstationary version of the FD relation

where the nonstationary friction kernel,γ(t,t′), has been
implicitly defined. In thet ) t′ limit, one obtains the time-
dependent MSRF

We have shown that the iGLE, interpreted as a nonstationary
(“irreversible”) GLE, gives the correct equilibrium behavior in
quasi-equilibrium limits and in illustrative models.19,20 In the
case thatg represents a change in the solvent response due to
outside forces, we have thus far explored the iGLE with constant
and biased potentials. The form ofg has been taken as a
switching function which changes the solvent from a lower to
a higher effective friction constant,g2(t)γ0. The results show
that the iGLE dynamics does satisfy equipartition well beyond
the equilibrium limit.

III. Stochastic Dynamics with Temperature Variation

A. Naive Adiabatic Temperature Variation. Perhaps the
most straightforward way to introduce irreversible temperature
variations in the iGLE formalism is to simply replace the
temperatureT0 (which appears in the auxiliary dynamics for
the random forceê0) with a time-dependent profileθ(t). For
example, if (as in the numerical simulations of refs 19 and 20,
as well as those presented later in the present paper), we take
the stationary part of the friction kernel to have the exponential
form34-37

and generate the random force via the auxiliary Langevin
equation,

then the uncorrelated Gaussian random forceêG would have
the variance

That is, at a given timet in a given realization,êG(t) is a random
number chosen from the Gaussian distribution with the variance
of eq 8. (We use the term “naive” to describe this choice ofêG

to impose the temperature constraint because it constrains the
auxiliary Gaussian bath rather than the bath itself.)

Consequently, in regimes whereθ(T) varies rapidly compared
to τ, the variance of the induced random forceê0(t), will not
satisfy an instantaneous FDR

Alternatively, whenθ(t) is constant or slowly varying compared
to τ, the inhomogeneity in eq 7 will decay away, and so the
instantaneous FDR of eq 9 will be satisfied. In this latter limit,
the imposed temperature on the bath, vis-a-visêG(t), is the same
as the temperature in the response of the bath to the chosen
coordinate. Since this condition is satisfied only for slow
temperature variations, the use of the equations of this subsection
to control temperature variations will be called thenaiVe
adiabaticapproach throughout this paper.

While this intuitively attractive procedure should be satisfac-
tory for adiabatic temperature variations as noted above, it may
not be satisfactory for irreversible temperature variations in
which the heat bath, represented by the random force, will not
be in “temperature equilibrium”; i.e. eq 2 and therefore eq 4b,
with T replaced byθ(t), will generally not be satisfied. Thus,
analysis of the resulting iGLE is complicated by having two
simultaneous nonequilibrium processes each characterized by
a different effective temperature: one due to the response of
the auxiliary dynamics to the irreversible temperature variation
in an arbitrary Gaussian bath vis-a-visêG, and another due to
the response of the chosen coordinate to the resulting nonequi-
librium random force. Neither does this method suggest an
obvious extension to the FD relation, which might otherwise
have brought some conceptual order to this situation.

B. Temperature Variation in the iGLE. An alternative
procedure for introducing irreversible temperature variations
would be to run the auxiliary dynamics at theconstant
temperatureT0 and then rescale the resulting random force by
a factor of xθ(t)/T0. As detailed in the Appendix, in the
constant-temperature equilibria before and after a temperature
variation, this alternative approach is effectively identical to the
above intuitive procedure. During an irreversible temperature
variation, however, it is superior in that it guarantees the
instantaneous temperature equilibrium, i.e., eq 5, of the heat
bath, regardless of the temperature profile used, and leads to a
natural extension of the FD relation.

Specifically, the iGLE random force of eq 3 is redefined

whereθ(t) is a time-dependent temperature profile andT0 is

ῠ(t) ) -∫t
dt′ g(t)g(t′)γ0(t - t′)υ(t′) + g(t)ê0(t) + F(t) (1)

〈ê0(t)‚ê0(t′)〉 ) kBT0γ0(t - t′) (2)

ê(t) ≡ g(t)ê0(t) (3)

〈ê(t)‚ê(t′)〉 ) kBT0γ(t,t′) (4a)

≡ kBT0g(t)g(t′)γ0(t - t′) (4b)

〈ê2(t)〉 ) kBT0g
2(t)γ0(0) (5)

γ0(t - t′) ) γ0(0) e-|t-t′|/τ (6)

ê̇0(t) ) -(1/τ)ê0(t) + êG(t) (7)

〈êG
2(t)〉 ) γG ) 2γ0(0)kBθ(t)/τ (8)

〈ê0
2(t)〉 ) kBTγ0(0) (9)

ê(t) ≡ xθ(t)
T0

g(t)ê0(t) (10)

Irreversible Nonequilibrium Environments J. Phys. Chem. A, Vol. 103, No. 50, 199911005



the constant temperature at which we run the auxiliary dynamics.
This leads to a revised FD relation

which is appealing because (i) in time regimes whereθ(t) is
approximately constant relative to the the decay time ofγ, it
reduces to the usual thermalized FD relation; and (ii) it satisfies
the instantaneous FDR of eq 9. Thus, this generalization of the
iGLE to include temperature variations satisfies the correspond-
ing equipartition theorem in the equilibrium limit.

C. Quasi-equilibrium Limit of the iGLE. As in the initial
paper on the iGLE,19 we can write the variable-temperature
iGLE in frequency space as

whereg(ω) andθ(ω) are the Fourier transforms ofg(t) andθ(t),
respectively. As before, we assume that in quasi-equilibrium
regimes, under quasi-adiabatic temperature variations, there
exists a characteristic timeth such that

where the tilde on the variables denotes the local Fourier
transform

which reverts to the Fourier transform in the limit thatδ goes
to infinity. Use of eqs 13 in a locally transformed version of eq
12 leads to

Following the analysis from eqs 16-21 in ref 19, we obtain

which is precisely the form of the desired adiabatic equipartition
theorem.

The extension of the iGLE to include temperature variations
gives the correct behavior in equilibrium and quasi-equilibrium
regimes. It also ensures the instantaneous equilibrium of the
random-force distribution (viz. the heat bath) and consequently
unifies the irreversible nature of the iGLE into a single form.
Thus, the temperature-ramping scheme provided through eq 10
constitutes a reasonable and practical generalization of the iGLE
to include irreversible temperature variations.

IV. Numerical Simulations

We now explore and contrast the characteristics of the naive
adiabatic approach and the iGLE method for temperature-
ramped chemical kinetics. In order to limit the analysis to that
of temperature variations only, the nonstationarity component
g(t) is set to unity. The stationary part of the friction kernel is
taken to be of the exponential form in eq 6.34-37 The following
parameters are common to all the simulations presented
herein: N ) 10 000,γ0(0) ) 10.0,∆t ) 4.0 × 10-3, and∆tê

) 4.0× 10-4, all in reduced units. (Recall thatN is the number
of trajectoriessrealizationssto be averaged over,∆t is the time
step for the iGLE dynamics, and∆tê is the time step for the
auxiliary dynamics of the associated Langevin equation, eq 7.)
A discussion of the technical details of the integration is given
in ref 19; no additional complications arise as a result of the
inclusion of temperature variations.

In what follows, we will explore a series of numerical
experiments in which the naive adiabatic GLE and the iGLE
are used to obtain the response of the chosen coordinates to
various fast temperature changes in the bath. By “fast,” we mean
that the change in the temperature of the bath modes is faster
than the solvent response time. As such, the heating and cooling
of the bath modes cannot be due only to surface effects. Instead,
all the bath modes must be heated or cooled simultaneously
and at a faster time scale than their response time. This can be
accomplished with laser pulses that excite the vibrational modes
of each of the bath modes and for which the intramolecular
vibrational energy relaxation between the bath modes is faster
than the response time,τ, of the bath modes to the motion of
the chosensprojectedscoordinate. (Such a separation of time
scales is certainly observable in glassy dynamics and may be
seen in certain liquids, as well.) A conceptually simple and
interesting experiment, discussed in section IVC, involves
subjecting the sample to a train of laser pulses used to cycle
the bath between two different temperatures. The switching
function, or half-pulse, and full pulse discussed in section IV,
parts A and B, may also be experimentally realizable, but are
included primarily to help analyze the various effects in the
pulse train.

A. “Switching-Function” Temperature Profile. We first
consider the response of the system to a simple, monotonic
change from one temperature to another. The specific profile
used is that of two constant-temperature limits joined smoothly
through the form

whereτθ is the turn-on time. The temperature profile and the
friction kernel displayed in Figure 1 have parameters chosen
such that there is a significant temperature variation and the
time scales of the variation and the response are comparable. If
the response is fast compared to the time scale of the temperature
variation, the iGLE recovers the adiabatic result of section IIIA.

Figure 1. Stationary friction kernelγ0 (dotted curve) and the
“switching-function” temperature profileθ (solid curve) as a function
of time. The parameters used areθ1 ) 1, θ2 ) 10, τθ ) 1.66, andτ )
0.5. (The quantities plotted here have different dimensions but are shown
on the same graph for ease of comparison; this also applies to Figures
4, 5, 6, and 7.)

θ(t) ≡ {θ1 for t < 0
1/2(θ2 - θ1)[1 - cos(πt/τθ)] + θ1

for 0 < t < τθ

θ2 for t > τθ
(17)

〈ê(t)ê(t′)〉 ) kBxθ(t)θ(t′)g(t)g(t′)γ0(t - t′) (11a)

≡ kBxθ(t)θ(t′)γ(t,t′) (11b)

iωV(ω) ) ∫-∞

∞
dω1 ∫-∞

∞
dω2 θ(ω2)g(ω - ω1)ê0(ω1) -

∫-∞

∞
dω1 ∫-∞

∞
dω2 g(ω - ω1)γ0[ω1]g(ω1 - ω2)V(ω2) (12)

g̃(ω) ≈ g( th)δ(ω) (13a)

θ̃(ω) ≈ θ( th)δ(ω) (13b)

f̃(ω) ≡ (1/2π)∫th-δ

th+δ
dt e-iωt f(t) (14)

iωυ̃(ω) ) -g( th)2γ0[ω]υ̃(ω) + θ( th)g( th)ễ0(ω) (15)

〈υ2〉 ) θ( th) (16)
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The time correlation functions of the random force,〈ê(t)ê(t′)〉,
(with parameters as in Figure 1) for both methods are displayed
in Figure 2. Also displayed is the reference functionkBθ(t)γ(t,t′)
which, for constant (or adiabatically varying) temperature, is
equal to〈ê(t)ê(t′)〉. The fact that the three curves are clearly
different indicates the irreversibility of the temperature variation.
Note, however, that as required by eq 11 theinterceptof the
correlation function (i.e., the MSRF) is equal to that of the
reference function for the iGLE, but not for the adiabatic
method. This graphically demonstrates that the iGLE maintains
the instantaneous temperature equilibrium of the heat bath, while
the adiabatic method fails to do so for fast temperature
variations.

The MSRF (normalized byγ0(0) in order to fit the scale of
the plot) and mean-square velocity (MSV) for both methods
are compared to the temperature profile in Figure 3. Once again,
for a reversible transformation (and forN f ∞, where
fluctuations are negligible) all five curves would be identical.
As noted above, the iGLE is constructed such that〈ê2(t)〉/γ0(0)
follows the imposed temperature precisely, regardless of its rate
of change, as is confirmed in the figure to within finite-size
fluctuations. This leads to a MSV (effectively the temperature
of the system, as opposed to the bath) that is much more
responsive to temperature variations in the bath than that
obtained from the naive method. As seen in Figure 3, the
response of the system is made unduly sluggish because it is
driven by a random force which lags behind the correct value
corresponding to the current value of the temperature profile.

B. Pulsed Temperature Profile. To further probe the
variable-temperature behavior of the iGLE, we now consider
hysteresis effects. The temperature profiles take the system
smoothly but quickly (with time scaleτθ) from an initial
temperatureθ1 to a higher temperatureθ2, maintainθ2 for a
delay timeτd, and finally return the system smoothly toθ1.
Specifically,θ(t) is defined through the form

whereτθ,d ≡ τθ + τd, andτ2θ,d ≡ 2τθ + τd.
Using the same parameters as in Figure 1 withτd ) 0 to

obtain a single temperature pulse, we find the behavior displayed
in Figure 4. As before, the friction kernel and temperature profile
have similar time scales, and we find the qualitative behavior
we would expect based on the previous results. The MSRF in
the iGLE follows the temperature profile reversibly, while that
from the naive method lags behind, which, owing to the peaked
form of θ, causes〈ê2(t)〉 to peak below its reference (reversible)
value. The MSV’s behave accordingly: the curve for the naive
method lagging behind that of the iGLE and peaking later at a
lower value. If we increase the time scale ratio of the friction
kernel to the temperature profile by takingτ ) 1.0 andτθ )
0.83, as seen in Figure 5, the MSRF’s are qualitatively similar
to those seen in the previous case. The hysteresis associated
with the naive method simply becomes more pronounced. The
MSV in the iGLE is, however, dramatically different from that
of Figure 4, exhibiting structure (at least five clear maxima)
beyond the simple peaked form ofθ(t). The MSV in the naive
method also shows some additional structure, but this is much
more muted, still displaying only a single maximum.

This change in behavior of the MSV is clearly a memory
effect, and to further examine this connection, we now consider
the effect of a nonzero plateau,τd, at the higher temperature.
In Figure 6 we show the MSV’s obtained forτ ) 1.0 andτθ )
0.83 as in Figure 5, and with three different values ofτd. Even
for the very small plateauτd ) 0.25, the structure of the MSV
in the iGLE is significantly softened. The naive method, being
less responsive, gives a MSV which is relatively unchanged

Figure 2. Comparison of the random-force correlation functions
observed in the adiabatic (dotted curve) and iGLE (dashed curve)
methods and the nonstationary friction kernel (solid curve) as a function
of (t - t′), and at the intermediate timeτθ/2 ()0.83). The temperature-
ramping conditions are those of Figure 1.

Figure 3. Comparison of the temperature profilekBθ(t) (solid curve),
the mean-square random force〈ê2(t)〉 (divided byγ0(0)()10.0) in order
to fit the scale of the plot), and the mean-square velocity〈υ2(t)〉 for
each method, as a function of time. The adiabatic MSRF, iGLE MSRF,
adiabatic MSV, and iGLE MSV, are displayed by short-dashed, dotted,
dot-dashed, and long-dashed curves, respectively.

Figure 4. A comparison of the MSRF’s and MSV’s obtained in the
adiabatic and iGLE methods for the case in which the time scale,τ )
0.5, of the friction kernel,γ0(t) (solid gray line), is much faster than
the ramping time,τθ ) 1.66, in the temperature profile,θ(t) (solid black
line). The remaining curves are as in Figure 3.

θ(t) - θ1 ≡

{0 for t < 0
1/2(θ2 - θ1)[1 - cos(πt/τθ)] for 0 e t < τθ

θ2 - θ1 for τθ e t < τθ,d
1/2(θ2 - θ1)[1 - cos(π(t - τd)/τθ)] for τθ,d e t < τ2θ,d

0 for τ2θ,d e t

(18)
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from the simple pulsed case. These trends continue for increas-
ing τd until we reach the point where the friction kernel decays
to a very small value within the span of the plateau, as seen for
τd ) 4.0. In this case, the MSV obtained while heating becomes
uncorrelated with that obtained while cooling. Any further
increase inτd leaves the structure of the MSV unchanged except
for the increased time spent at〈υ2(t)〉 ) θ2. Nevertheless, there
remains some structure in the MSV due to the sudden change
in θ at the edges of the plateau.

C. Oscillatory Temperature Profile. Finally, we consider
the case of a temperature profile which is initially fixed and
then oscillates sinusoidally betweenθ1 andθ2 for t g 0:

Once again takingθ1 ) 1, θ2 ) 10, andτθ ) 0.83, we show in
Figure 7 the MSRF for three different values ofτ. As τ increases,
the MSRF of the naive method lags further behind that of the
iGLE, cycling with smaller and smaller amplitude. Forτ ) 2.0,
its amplitude is only about a fourth that of the reversible profile
produced by the iGLE, highlighting the fact that the superiority

of the iGLE relative to the naive method increases with the
length of the friction memory.

The resulting MSV’s for theτ ) 1.0 case are displayed in
Figure 8. As in the pulsed-temperature case of the previous
section, the MSV obtained in the iGLE shows considerable
structure (two peaks for every peak inθ) that the adiabatic
method misses. Also note that the MSV in the iGLE appears to
be shifted upward relative to that in the naive method. In fact,
once both curves have settled into periodic behavior (aftert )
6, or so), the time average of the MSV in the iGLE is∼6.8,
while the naive method gives an average of∼5.5, which is also
the time average ofθ. This difference is a result of the fact that
(as seen most clearly in Figure 6) the iGLE responds much more
quickly to heating than does the naive method, while both
methods are similarly responsive to cooling. Thus, not only does
the iGLE find detailed dynamics that the naive method misses,
it can also give very differenttime-aVeragedproperties in the
presence of a cyclic temperature profile.

V. Concluding Remarks

The iGLE theory has been extended to include nonadiabatic
variations in the temperature of the environment. As shown in
section IV for a variety of temperature variations, the iGLE

Figure 5. A comparison of the MSRF’s and MSV’s obtained in the
adiabatic and iGLE methods as in Figure 4, but withγ0(t) having a
much slower time scale,τ )1.0, than the ramping time,τθ ) 0.83, in
θ(t).

Figure 6. A comparison of the MSV’s obtained in the adiabatic and
iGLE methods, for pulsed temperature profiles whose turn-on time,τθ

) 0.83, and friction response time,τ ) 1.0 as in Figure 5, for various
delay times,τd ) 0.25, 1.0, and 4.0. The friction kernelγ0(t),
temperature ramp, adiabatic MSV, and iGLE MSV are displayed by
solid gray, solid, dotted, and short-dashed curves, respectively.

θ(t) ≡ {θ1 for t < 0
1
2
(θ2 - θ1)[1 - cos(πt/τθ)] + θ1 for t > 0

(19)

Figure 7. A comparison of the MSRF’s obtained in the adiabatic and
iGLE methods for oscillating temperature profiles (dotted curve) with
period 2τθ ) 1.66, for various friction kernels (solid curve) as
characterized by three different response times,τ ) 0.5, 1.0, and 2.0.
The adiabatic MSRF is displayed by the short-dashed curve, while the
iGLE MSRF matches the temperature profile (dotted curve) exactly.

Figure 8. A comparison of the MSV’s obtained in the adiabatic (dotted
curve) and iGLE (short-dashed curve) methods, for the same oscillatory
temperature profile (solid curve) used in Figure 7 with the response
time τ ) 1.0 in γ0(t).
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provides instantaneous control of the bath temperature, even
when a slowly decaying friction kernel (i.e., a long memory)
necessitates that the random force be generated by intrinsically
slow auxiliary dynamics. This differs from the naive adiabatic
approach in which the bath has an implicit, and nonphysical,
delay in its response to an imposed temperature variation. [Such
a time delay might be expected in an experiment in which the
bath was in turn heated or cooled by an even larger bath.
However, the response time to such heating or cooling would
be governed by a number of factors (such as the heating rate
and the interaction strength between the bath and the larger bath)
in which the bath relaxation time,τ, would only play a partial
role. As such, the time delay in the naive adiabatic approach
represents only the effects of heating or cooling due to the
coupling of the bath to a (larger) artificial auxiliary Gaussian
bath. The iGLE approach removes the time delay through a
construction which ensures that the bath and its response are
governed consistently by a single temperature.]

Interestingly, it was also found that the iGLE has a hysteresis
effect, in that it responds more quickly to the “heating” phase
of a pulsed (or cyclic) temperature profile than to the “cooling”
phase. While this result may seem surprising on first inspection,
it is actually a simple result of energy-diffusion-limited dynam-
ics.38 In this regime, there exists an activated rate process for
the system to transfer between energy states. The rate is faster
for higher temperature, and hence the system heats faster than
it cools. A quantitative analysis of these diffusion rates and how
they relate to the observed structure in the MSV will be the
subject of future work.

Finally, it should be noted that the iGLE permits the study
of stochastic dynamics on a reaction path coupled to a bath
with externally controlled temperature variation, which should
make it valuable in the study of temperature-ramped chemical
kinetics.
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Appendix: Role of Temperature in Gaussian Noise

The random forceê0 is generally taken to be Gaussian-
distributed, colored noise. In what follows, we note some
properties of Gaussian distributions which are useful in con-
structing the temperature-ramping scheme developed in Section
III.

The odd moments of the distribution are all zero since it is
symmetric about the origin. Defining the integral

where (n - 1)!! ) 1‚3‚5...n - 1 and 0!!) -1!! ) 1, the even
moments are given by

for n an even nonnegative integer. Interpreting the variablex
as the stationary random forceê0, and recognizing that the FD
theorem requires that we take the variance to be

the even moments of the stationary random-force distribution
are

Thus, we see that thenth moment scales as the (n/2)th power
of the temperature, i.e., the generic temperature variationsT0

f aT0 affects the moments per〈ê0
n〉 f an/2〈ê0

n〉.
It is also well-known39 that a Gaussian deviate of variance

σ2 can be converted to one of varianceσ′2 by simply multiplying
the latter deviate byσ′/σ. From eq A3 we see that in order to
convert the random-force distribution from one appropriate to
T0 to one appropriate to temperatureθ, we would multiply the
random force, generated atT0, by σθ

2/σT0
2 ) xθ/T0, i.e.

which is identical to eq 10 withg ) 1. Furthermore, in terms
of eq A1 (once again identifyingx with ê0), this transformation
amounts to taking

Using eqs A2 and A3, we find that

which is the same as eq A4, withT0 replaced byθ. This shows
that for fixed-temperatureθ, this procedure has exactly the same
effect on the random force as does the previously discussed
method of varyingσ2 directly. This is true not only for the
variance but forall the moments of the distribution.
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